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Abstract 
    In some applications of speaker recognition, for example in the forensic area or in the access 
control systems, an important task is to estimate some absolute measure of identity of the speakers. 
Automatic speaker recognition methods in this case seem to be the fastest and the simplest speaker 
identification tool [1-2]. However, up to now the applicability and reliability evaluation of 
automatic speaker recognition systems (ASRS) for single cases, e.g. in forensic area, is widely 
disputable [3-7]. Output results of state-of-the-art ASRS are based on statistical data analysis. Their 
applicability for individual comparisons is theoretically and practically rather complicated task. In 
this paper we address the issue of more detailed analysis of training data statistical structure and 
more careful decision making for ASRS in the context of  one-to-one speech recordings 
comparisons using confidence bounds curve idea and bootstrap calculating technique. 

1. Introduction 

    Up-to-date automatic speaker recognition systems (ASRS) are based on data-driven approaches 
of building and using speaker models. This is due to the fact that the factors affecting speaker 
characteristics are too numerous and complex in their influential structure for an exact definition in 
rules and constructive models [8-11]. Even if the training speech dataset is large enough, the 
learning outcomes of a particular ASRS can only say that if you repeat similar studies on this 
system, then the results would be similar to the results of the statistical learning of the system 
performed previously. This is acceptable and useful in practice if the ASRS is used, for example, to 
search for the target speaker in the list of a large number of suspects. On average, the system will 
correctly rank the speakers by their similarity with the target. However, in case the absolute results 
of a single comparisons are important, for example in forensic practice, usage of a point statistical 
estimation is insufficiently.  
   In theory and practice of identification analysis the international scientific society suggests 
solving such problems with a standard approach of uncertainty parameters in measurement [12]. In 
compliance with adopted definitions, uncertainty in measurement is “parameter, associated with the 
result of a measurement that characterizes the dispersion of the values that could reasonably be 
attributed to the measurand”. In this article we suggest to use the value of corresponding boundary 
of one-sided confidence interval (OCI) as such a parameter, as well as, relying on OCI, to determine 
curves of confidence boundaries (CB) of identification decision probability.  
   As adopted in multiple publications, we use Bayesian approach to interpret speaker recognition 
results [5,13-16]. For classifier scores received with ASRS we evaluate the posterior probabilities of 
identity of the speakers. This is the useful similarity measure for single comparisons because it has 
the clear interpretation as a degree of belief. To construct a confidence bound curve for posterior 
probability we use a nonparametric bootstrap method, which does not demand some presumptions 
about the shape of the sampling distribution. Bootstrap modeling is widely applied in ASRS 
performance evaluation to estimate the uncertainty of detection cost function [10], ROC curves [17] 
and FR-FA curves [18]. We show the importance of using confidence bound curves for the 
approaches which make single comparisons and need to estimate an absolute values of similarity.  

2. Method 
2.1. Posterior probability estimation 

   The task is to compare two audio records for the presence of speech belonging to the same 
speaker or different speakers. For the interpretation of a classifier score achieved by the ASRS for a 



single comparison an expert need to have a set of “imposter” (different speakers) and “target” (same 
speakers) comparison results calculated with the same ASRS on some population. This population 
is usually chosen by the expert so as to take into consideration properties of the objective compared 
phonograms [1-2].Then the between-speaker and within-speaker variability distributions are 
estimated on achieved training set. According to this distributions the expert estimates some 
similarity measure between source phonograms. This estimation is the final result of ASRS work, 
applicable according to some authors in one or another form to court trials [1,15,19,20]. 
The Bayesian approach for speaker recognition implies the next two hypotheses: 
H0 - the suspected speaker is the source of voice on the questioned recording, 
H1 - the speaker at the questioned recording is not the suspected speaker. 
Let us denote x  as a classifier score achieved by the automatic method during the comparison of 
two recordings. For the treatment of measurement results in a probabilistic sense, it is convenient to 
use the posterior probability P(H0|x), i.e. probability of validity of the hypothesis about the identity 
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where )( 0HP  and )( 1HP  - prior probabilities of hypotheses, P(x|H0) and P(x|H1)- likelihood of 
hypotheses. Posterior probability of the hypothesis, that the recordings contain voices of different 
speakers, is respectively equal to: 

 )(1)( 01 xHPxHP           (2) 
We propose to use the posterior probability P(H0|x) because it has the clear probabilistic sense and, 
moreover, it is useful for some post-processing, for example to make a fusion of results of different 
ASRS. 
For the assessment of the posterior probability P(H0|x)  we use the Platt calibration [21]. According 
to this method  P(H0|x), can be represented as a sigmoid function of the score x: 
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where A, B – calibration parameters. The parameters are fitted using maximum likelihood 
estimation from a training set consisting of “imposter” and “target” comparison results. 

2.2. Uncertainty estimation for the posterior probability 

   As a rule, the interpretation of the results of automatic identification techniques is limited to point 
measurements of the posterior probability or any other measure of similarity of speakers in the 
phonograms. However, in our opinion, this problem requires a more precise analysis of the 
situation. In order to give the more accurate interpretation of the identification results obtained by 
automatic methods, we refer to the concept of measurement uncertainty of posterior probability. To 
this end, we describe a procedure of constructing a one-sided confidence interval (OCI) - an interval 
that has a pre-specified high probability of including the true value of the parameter. 
   From statistical point of view the estimation of the true posterior probability )|( 0 xHP  is a random 
variable. To calculate CI of this estimation we can evaluate the parameters of its sample 
distribution. There are a number of methods to build CI, presuming Gauss shape of the sampling 
distribution, such as the Wilson interval, the Wald interval, etc. But for the speaker recognition task 
such a proposal is ungrounded. 



   The bootstrapping idea allows one to approximate sampling distribution based on only one initial 
sample. Let ‘s say an estimation of posterior probability )|(ˆˆ

0 xHPP nn   is calculated for a starting 
sample ),...,( 1 nXX  using aforesaid algorithm. We need to construct for this estimation CI covering 
with given reliability the values of the evaluated parameter )|( 0 xHP . We construct a large number 
of repeated samples from one starting sample extracting with return its elements. Thus, given data is 
considered as the parent population to produce repeated samples. We create the set from B  
repeated samples ),...,( **

1 nXX  and calculate for them correspondent values BbbPn ,..,1),(ˆ *  . Based 
on estimates for bootstrap-samples we calculate the bootstrap-distribution – an analog of sample 
distribution for usual samples. Let cumulative distribution function of *
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   For comparison with a high similarity degree we use the value of lower CI and for comparison 
with law similarity degree we use the value of upper CI. 
   The bootstrap method proposes that elements in original sample are independent. But in our case 
the sample elements are dependent when we compare records of the same speakers. For this 
problem solving we use Subset bootstrap [18]. The subset bootstrap proposes to fragment the all 
comparisons set into independent comparisons subsets for every speaker's pair. The repeated sample 
is formed from subsamples for each of these subsets. 

3. Experimental results 
   We demonstrate some experimental results to investigate the influence of measurement 
uncertainty on the interpretation of ASRS results. We use the NIST 2008 speaker recognition 
evaluation dataset and The Russian Switched Telephone Network corpus (RuSTeN) [23]. As ASRS 
we use GMM-SVM-based system, developed by Speech Technology Center, Ltd (STC) for NIST 
SRE 2010 [11]. 

3.1. Confidence interval calculation for the posterior probability 

   We use the sample from NIST 2008 SRE dataset, where there are microphone recordings of 
interview. To make this data more uniform we use only the male voices. According to (2.1) using 
Platt calibration we estimate )|( 0 xHP , i.e. the posterior probability that for given classifier score x  
speakers are the same. Then, according to (2.2) we use the bootstrap approach to estimate upper and 
lower CI bounds in every point x  for significance level 95.0,80.0 and 99.0 . It is important for 
voices comparisons with high similarity degree to get lower bound of )|( 0 xHP , that 

lower
nPxHP ˆ)|( 0   with some confidence level  . And vice versa, for voices comparison with low 

similarity degree to get upper bound: upper
nPxHP ˆ)|( 0   with some  . We find out the area of x  

values, where with probability   it is possible to assert that the speaker is rather “friend” than “foe. 
i.e. when lower bound of 5.0ˆ lower

nP . Similarly one can find out the area of x , where with 
probability   it is possible to assert that the speaker is rather “foe” than “friend. i.e. when upper 
bound 5.0ˆ upper

nP . The intermediate area corresponds to an uncertain situation. Figure 1 shows 



dependence )|( 0 xHP  from classifier score x  for sample from NIST 2008 SRE dataset, as well 
confidence bound (CB) curves for )|( 0 xHP , which are limits of upper-CI for left area and lower-CI 
for right. We can note that CB for )|( 0 xHP  gives a significantly less strong decision for speakers 
similarity degree, than standard estimate )|( 0 xHP , but reliability degree of the identity decision 
now may be exactly characterized by significance level. The middle area with horizontal CB curve 
is in this case an uncertainty zone, which appears due to taking into account the measurement 
uncertainty. 

 
Fig. 1: Probability )|( 0 xHP  versus x-score curve and confidence bound (CB) curves for 

)|( 0 xHP  calculated for sample from NIST 2008 SRE for confidence levels 80%, 95% and 99%. 

   The proposed approach gives the user for every individual case their own values of minimal 
match probability and maximal mismatch probability for every confidence level. Except that for the 
given ASRS the new feature appears: between voices similarity measure area, where the identity 
decision for given confidence level is in principle uncertain. 

3.2. Confidence interval dependence from training speech dataset 

   We investigate how we will change the CB for )|( 0 xHP  in dependence from speech material, 
used for evaluation. We used the samples from the NIST2008 SRE dataset and the speech database 
RuSTeN [23]. The one sample from the NIST2008 SRE dataset includes remote microphone 
recordings, the other sample includes telephone and RuSTeN - landline telephone recordings. This 
datasets have a different level of quality: the telephone sample from the NIST SRE dataset has the 
best quality and phonograms from the RuSTeN - the worst. The average signal-to-noise ratio (SNR) 
for this datasets is shown in Table 1. 
Table 1. Average Signal-to-Noise Ratio (SNR) for training datasets 

 NIST telephone NIST microphone RuSTeN 
SNR 28 dB 18 dB 15 dB 
Fig. 2 shows evaluation of posterior probability )|( 0 xHP  for different training datasets, and 
confidence bounds (CB) curve for 95.0 . 



 
Fig. 2: Probability P(H0|x) versus x-score curves and confidence bound (CB) curves for P(H0|x), 
calculated for samples from NIST 2008 SRE phone, microphone and RuSTeN base for α=0.95. 

   First, we can say that )|( 0 xHP  values depends dramatically on the training dataset. Second, the 
worse the quality of training records is, the larger the СI and the uncertainty zone (horizontal curve  
area) are. In case we use the RuSTeN database as a training set we have around 2-4 times more 
uncertain result, then for training dataset with good sound quality. So the end ASRS user is 
responsible for the adequate choice of the ASRS training speech data base for a given case, and 
ASRS developers are responsible for accordance of needed possibilities. 

4. Conclusion 

   We showed the practical way of confidence bounds curves usage for evaluating ASRS results 
uncertainty. OCI were estimated with the bootstrap method. We demonstrated that this framework 
may be effectively used for one-to-one speech files comparison, in particular, in forensic 
applications of ASRS. This approach to evaluation and interpretation of ASRS results supplements 
the usage of traditional ROC, DET, TIPPET curves and allows for greater reliability to be applied to 
statistical conclusions for single cases. 
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